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GRADIENT METHODS FOR ANALYTIC ROTATION

ABSTRACT

Gradient methods are employed in orthogonal and oblique analytic

rotation. Constraints are imposed on the elements of the transformation

matrix by means of reparameterisations.



a

GRADIENT METHODS FOR ANALYTIC ROTATION

1. INTRODUCTION

The analytic rotation of a factor matrix is a problem in optimisation

subject to constraints. Given a p x m factor matrix, A, we have to

find an m x m transformation matrix, T, which optimises a function,

f , of the elements of the rotated factor matrix

A = AT

The transformation matrix is required to satisfy certain constraints;

TIT = I

in orthogonal rotation, and

(1)

Diag(T-1T-11) = I (2)

in oblique rotation of the primary factor pattern.

If the reference structure rather than the primary factor pattern

is to be rotated obliquely, other constraints are imposed on T . This

approach, however, has serious disadvantages which have been pointed out

by Jennrich & Sampson (1966). It will not be considered here.

Iterative algorithms for optimising a criterion for simple structure,

f , which operate on pairs of columns of the factor matrix sequentially

have been successful, both in orthogonal rotation (Kaiser, 1959) and in

oblique rotation of the factor patter'. (Jennrich & Sampson, 1966). Such

algorithms do, however, have some disadvantages. Hounding errors can

accumulate during iteration. Also; each stei, yields a conditional
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optimum of f with respect to one free parameter holding the rest fixed, a

process which can sometimes converge slowly, particularly when the number

of parameters is large (Box et al., 1969. p. 25).

Another algorithm for orthogonal rotation which obtains a new T on

each iteration and does not accumulate rounding error has been proposed

by Horst (1965, Sections 18.4, 18.7.2; Mulaik, 1972, Section 10.5). Little

is yet known about convergence properties of the algorithm.

A gradient method with the property of quadratic termination, the

Fletcher-Powell method, has been employed with considerable success by

Areskog (1967, 1969) in maximum likelihood factor analysis. The purpose

of this paper is to show that gradient methods, such as that of Fletcher

& Powell (1963), can easily be employed in analytic rotation. Reparameter-

isations are used, the m
2

elements of T being expressed as functions of

a smaller number of free parameters. Since a new T is obtained at each

step of the algorithm, there is no accumulation of rounding error.

Section 2 reviews some basic results concerning the function to be

minimised. A reparameterisation for orthogonal rotation and formulae for

the gradient are given in Section 3. Corresponding results for oblique

rotation are given in Section 4. In Section 5 the implementation of the

procedures is discussed.

2. CRITERIA FOR SIMPLE STRUCTURE

The methods to be given subsequently are general and require only a

criterion for simple structure to be minimised, f and a corresponding

m x m matrix of first derivatives
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A property of the criterion which will be assumed is that f is invariant

under interchanges or reflections of columns of T .

We shall specifically consider a family of criteria for simple

structure, dependent on a parameter K ( 0 < K < 1 ), which was proposed

by Crawford & Ferguson (1970):

where

m 2 2m 2 2
f = (1 K) E E E K E .

1, is
i=1 sj J.1 i=1 rli 1:j r`)

= (1 - K) tr[D2] 4 K tr[D2] - tr[A'A3]
T1

D = Diag(AA')

D
7

= Diag(A'A)

[A3].. =
1,) 13

This family of criteria is equivalent to the Orthomax family in

(3)

orthogonal rotation (Crawford & Ferguson, 1970, p. 324). Minimising f

with K = 0 gives the Quartimax solution, K = 1/p gives the Varimax

solution, K = m/(2p) gives the Equamax solution and K = - 1)/(p + m - 2)

gives the Parsimax solution.
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In oblique rotation, minimisation of f (at least, when 0 < K < 1)

cannot result in the factor correlation matrix,

C T

becoming singular (Crawford & Koopman, 1972). This result follows

immediately from a theorem due to Jennrich & Sampson (1966, Theorem 1).

Minimising f with K = 0 gives the Quartimin solution considered by

Jennrich & Sampson.

The m x m matrix of first derivatives of f with respect to the

elements of T is (Mulaik, 1972, Section 10.5):

6f
Z k .A 1((1 K)D A + AD - A3)

11 7

It is of interest to note that f may be computed using

1
f

4
tr[T'Z]

which is equivalent to (3).

3. ORTHOGONAL ROTATION

2In order to impose the m(m + 1)/2 constraints in (1) on the m

elements of T we shall express T as a function of

q = m
2

- m(m + 1)/2 = m(m - 1)/2

(4)

(5)

(6)

parameters by means of the Cayley formulas (Gantmacher, 1959, pp. 288-289).

If T is any orthogonal matrix such that
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II + TI / 0 , (7)

then there is a nonsingular matrix X , where

such that

X ..
31

= -X.
3.3

x.. =1 , i 1,2 . m
11

T 2X
-1

I

(8)

(9)

(10)

Conversely, given any nonsingular X satisfying (8) and (9), the matrix

T constructed from (10) will satisfy (1).

We can therefore regard the transformation matrix T as a function

of a matrix X with elements satisfying (8) and (9) and minimise f with

respect to the m(m - 1)/2 free parameters x21,x31,x32 xm,m_i

If necessary, the matrix X corresponding to a particular T may be

obtained from

X = 2(1 + T)-1

Because of (7), orthogonal matrices such as

(ol 10)

0

or

0 1

which result in ,nterchanges or reflections of columns of A cannot be
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represented by (10). This, however, does not matter since f is invariant

under such operations.

Gradient methods for minimising f will require first derivatives of

f with respect to the (i < j) . Using the chain rule we obtain:xij

6f 6T 1
,y7 tr7 = [
6f

ij

-1 6x
= -2tr[ZtX X

-1,

ij

[C1z,)(1]

ji (12)

This result is general. Simplification is possible when Z is

defined by (4). It is easily verified that X-1A'D AX-1 is symmetric.

Consequently the first term in (4) may be discarded and (12) becomes

where

2ax-wx-1] ij [xwx-1] ji )X.

W = 4(10 A' - (A3)' ]A

This simplification reflects the fact that the first term in (3)

remains constant when T is orthogonal.

4. OBLIQUE ROTATION

(13)

The m constraints in (2) may be imposed on the m
2

elements of T

by expressing T as a function of
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q = M
2

M = M(M - 1) (14)

parameters.

If T is any nonsingular matrix which satisfies (2) and which has

nonnegative diagonal elements,

t.. >
11 i = 1,2, ... m (15)

then there is a nonsingular matrix X , with diagonal elements satisfying

(9), such that

where

1

T = X Diag2(V)

V = X
-1
X
-1'

(16)

Conversely, given any nonsingular X , the matrix T constructed using

(16) will satisfy (2).

We may therefore define the transformation matrix, T , by (16)

and minimise f with respect to the m(m - 1) nondiagonal elements of

X Again, certain permutations or reflections of columns of T cannot

be represented because of (15). Given any nonsingular T , however, it is

always possible to interchange and reflect columns so that (15) is

satisfied.

The factor correlation matrix is

_1 1

C = Diag 2(1) V Diag 2(1)

and, if necessary, X may be obtained from T using

X = T Diag
-1

(T) . (17)
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The gradient is given by

of 3f 6T 1
77 = tr [

= tr[Z11 6xX Diag(V) - X Diag4(V) Diag(X-1 11
ij ij

1
-1'

= (Z Diag2(V) - X Diag(Z'X) Diag-'2(V) V]
ij

. (18)

5. EXPERIENCE WITH GRADIENT METHODS

In employing gradient methods, the criterion for simple structure, f ,

,

is regarded as a function of the q free elements of the matrix X , where

q is defined by (6) or (14). Given X , the transformation matrix T

is obtained from (10) or (1G), the elements, afcx.. , of the gradient
ij

are obtained from (13) or (18) and (4), and f is obtained from (3) or

from (5).

Two gradient methods were tried. The first was Faetcher's (1970)

method, a development of the Fletcher-Powell (1963) method which seems to

require fewer function evaluations. The second was the Polak-Ribiere

method (Polak, 1971) which is similar to the Conjugate gradient method

of Fletcher& Reeves (1964). Fletcher's method, like t%at of Fletcher &

Powell, builds up an inverse Hessian matrix. The Fletcher-Reeves and

Polak-Ribiere methods do not. Consequently, they require less computer

storage than the Fletcher and Fletcher-Powell methods but appear to con-

verge less rapidly. When the number of factors, m , is less than six or
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seven, there are advantages in employing an algorithm which builds 4 an

inverse Hessian like that of Fletcher; when m is lerge, storage con-

siderations could require the use of the Fler.ther-Reeves or Polak-Ribare

methods.

The Fletcher method was implemented by making minor changes to a

subroutine package prepared by Gruvaeus & J8reskog (1970) for the Fi'Lcher-

Powell method. As suggested by Gruvaeus & J8reskog (1970), a starting point

for the Fletcher method was obtained by carrying out a faw initial steepest

descent iterations, starting with X = I The steepest descent iteratio.s

were terminated when two consecutive iterations yielded a relative decrease

in f of less than five percent.

In applications the algorithm ha: appeared to be satisfactory. Table 1

shows the orthogonal and oblique factor matrices obtained for Harman's 24

Insert Table 1 about here

psychological tests (Harman, 1960: Table 10.10) with K = (varimax).

Row normalisation of A (e.g., Harman, 1960, p. 302) was not carried out.

Table 2 gives the primary factor correlation matrix C for the oblique

solution. Details of the iterations are shown in Table 3. It can

Insert Tables 2 and 3 about here
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be seen that the oblique rotation required more iterations than the

orthogonal rotation. This was found to be true in general and can be

expected since more free parameters are involved in oblique rotation.

Iteration was terminated when all elements of the gradient vector were

less than .00001 x 24 in absolute value.

In implementing the Polak-Ribiere method (Polak, 1971, pp. 53-54)

the linear search subroutine of Gruvaeus & J8reskog (1970) was employed.

Reinitialisation of the process with a steepest descent step was carried

out after each set of q + 1 iterations. Inequalities (7) and (05)

suggest that one should ensure, before each reinitialisation, that the

ordering of columns T maximises e
=1

, It..11 1 and that t.. >0 , i 1 ... m .
1 11

This was done and, if reordering or reflection of columns of T was

necessary, X was recomputed using (11) or (17). In oblique rotation in

particular this step improved convergence. The Polak-Ribiere method then

appeared to be not much slower than the Fletcher method.

Using the same starting point and convergence criterion as those of

the Fletcher method, the Polak-Ribiere method was applied to Harman's

factor matrix. The rotatc!d factor matrices yielded by the two methods

agreed to three decimal places. It can be seen from Table 3 that the

Polak-Ribiere method compared quite favourably with the Fletcher method

in speed of convergence.
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Table 1.--Harman's 24 Psychological Tests:

Orthogonal

Factor Pattern Matrices. It = 1/p

RotationRotation Obliqut

.235 .653 .197 .125 .002 .657 .102 .088

.165 .419 .072 .074 .024 .429 .007 .054

.223 .520 .020 .054 .068 .545 -.058 .028

.267 .518 .086 .037 .110 .535 .014 .001

.780 .124 .208 .052 .750 .045 .141 .003

.785 .135 .098 .141 .746 .056 .001 .107

.843 .105 .153 -.002 .841 .036 .092 .062

.594 .309 .254 .048 .493 .258 .188 -.009

.837 .120 .013 .184 .807 .039 -.103 .161

.170 -.075 .714 .166 .075 -.212 .723 .124

.218 .065 .627 .290 .069 -.071 .583 .264

.062 .228 .692 .040 -.099 .154 .708 .024

.240 .390 .590 -.014 .0(5 .341 .582 .092

.261 .017 .196 .463 .146 -.103 .080 .496

.174 .128 .107 .478 .029 .035 -.023 .520

.171 .405 .127 .408 -.044 .349 -.012 .428

.197 .053 .232 .607 .032 -.086 .086 .658

.082 .323 .306 .5o6 -.157 .227 .172 .532

.189 .224 .180 .361 .02 .150 .072 .377

.423 .432 .116 .205 .260 .396 .003 .185

.229 .402 .394 .202 .029 .343 .319 .170

.435 .371 .064 .315 .274 .316 -.074 .316

.432 .526 .214 .159 .239 495 .109 .121

.398 .182 .459 .267 .250 .070 .383 .238
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Table 2.--Harman's 24 Psychological Tests:

Primary Factor Correlations. K =

1.000
.381
.271

.350

1.000
.295

.33o

1.000

.375 1.000
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